Studi Penurunan Konsentrasi Limbah Artificial Fe dengan Metode Elektrokoagulasi

Authors

  • Elsa Mariza Program Studi Teknik Kimia, Fakultas Teknik, Universitas Muhammadiyah Surakarta
  • Emi Erawati Program Studi Teknik Kimia, Fakultas Teknik, Universitas Muhammadiyah Surakarta

Keywords:

Elektrokoagulasi, Limbah, Artificial, Fe , Kinetika

Abstract

Limbah logam berat seperti logam Fe dapat membahayakan kesehatan manusia, hewan, maupun tumbuhan. Metode elektrokoagulasi adalah salah satu metode yang dapat digunakan untuk menghilangkan logam Fe. Pada penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi limbah dan tegangan terhadap konstanta kecepatan reaksi dan efisiensi penurunan konsentrasi limbah artificial Fe. Limbah Fe artificial dibuat dengan mencampur (FeSO4).7H2O dengan 500 mL aquadest diaduk selama 25 menit dengan kecepatan 600 rpm. Proses elektrokoagulasi dilakukan dengan mengambil sampel limbah dan dimasukkan ke rangkain alat elektrokoagulasi dengan menggunakan variasi konsentrasi (200, 300, dan 400 ppm) dan tegangan (10, 15, dan 20 volt) setiap selang waktu 25 menit sampel tersebut diambil kemudian diuji dengan menggunakan AAS. Berdasarkan penelitian efisiensi tertinggi adalah sebesar 81,20% pada variasi tegangan 15 volt. Konstanta kecepatan reaksi orde satu adalah 0,008 ppm-1 dan R2 sebesar 0,9485 sedangkan konstanta kecepatan reaksi orde dua adalah 0,00007 min-1ppm-1 dengan R2 sebesar 0,8916.

References

Rosli MA, Daud Z, Latiff AAA, Rahman SEA, Oyekanmi AA, Zainorabidin A, Awang H, Halim AA. The Effectiveness of Peat-AC Composite Adsorbent in Removing Color and Fe from Landfill Leachate. International Journal of Integrated Engineering; 2017; 9(3):35–38.

Bazrafshan E, Mohammadi L, Ansari Moghaddam A, Mahvi AH. Heavy metals removal from aqueous environments by electrocoagulation. Journal of Environmental Health Science and Engineering; 2015; 13(1).

Goher ME, Hassan AM, Abdel-Moniem IA, Fahmy AH, Abdo MH, El-sayed SM. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H. Egyptian Journal of Aquatic Research; 2015; 41(2) : 155–164.

Ahmed MJK, Ahmaruzzaman M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering; 2016; 10:39-47.

Dermentzis K, Stergiopoulos D, Giannakoudakis P, Moumtzakis A. Removal of copper and COD from electroplating effluents by photovoltaic electrocoagulation / electrooxidation process. Water Utility Journal; 2016; 14:55–62.

Padmaningrum RT, Marwati S, Sunarto, Sulistyani. Application of copper(II) oxide of electrocoagulation products of electroplating waste water as ceramic glaze dyes. Journal of Physics: Conference Series; 2019; 1:0–7.

Tripathi A, Rawat RM. Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. Journal of Bioremediation and Biodegradation; 2015; 06(06).

Jaishankar M, Mathew BB, Shah MS, T.P. KM, K.R SG. Biosorption of Few Heavy Metal Ions Using Agricultural Wastes. Journal of Environment Pollution and Human Health; 2014; 2(1):1–6.

Gunatilake SK. Methods of Removing Heavy Metals from Industrial Wastewater. Journal of Multidisciplinary Engineering Science Studies; 2015; 1(1):12-18.

Jamaly S, Giwa A, Hasan SW. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. Journal of Environmental Sciences; 2015; 37:15–30.

Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, Chemical Engineering Journal; 2015; 260:749-756.

Tyagi N, Mathur S, Kumar D. Electrocoagulation process for textile wastewater treatment in continuous upflow reactor. Journal of Scientific and Industrial Research; 2014; 73(3):195–198.

Jack F, Bostock J, Tito D, Harrison B, Brosnan J. Electrocoagulation for the removal of copper from distillery waste streams. Journal of the Institute of Brewing; 2014; 120(1):60–64.

Kobya M, Gengec E, Demirbas E. Operating parameters and costs assessments of a real dyehouse wastewater ef fl uent treated by a continuous electrocoagulation process. In : Chemical Engineering & Processing: Process Intensification; . Elsevier.; 2016.p.87–100.

Tian Y, He W, Zhu X, Yang W, Ren N, Logan BE. Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater. Chemical Engineering Journal; 2016; 292:308–314.

Rusdianasari, Jaksen, Taqwa A, Wijarnako Y. Effectiveness of Electrocoagulation Method in Processing Integrated Wastewater Using Aluminum and Stainless Steel Electrodes. In : IOP Conf. Series: Journal of Physics: Conf. Series; IOP.; 2019.

Elabbas S, Ouazzani N, Mandi L, Berrekhis F, Perdicakis M, Pontvianne S, Leclerc J. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials; 2015; 319:69-77.

Ridantami V, Wasito B, Prayitno. Pengaruh Tegangan Dan Waktu Pada Pengolahan Limbah Radioaktif Uranium Dan Torium Dengan Proses Elektrokoagulasi. Jurnal Forum Nuklir; 2016; 10(2):102-107.

Downloads

Published

2020-05-12

How to Cite

Mariza, E., & Erawati, E. (2020). Studi Penurunan Konsentrasi Limbah Artificial Fe dengan Metode Elektrokoagulasi. Prosiding University Research Colloquium, 291–296. Retrieved from https://repository.urecol.org/index.php/proceeding/article/view/930