Pengaruh Koenzim dan Kofaktor Protein Target Reduktase Aldosa dalam Docking Molekular Menggunakan DOCK6

Authors

  • Broto Santoso Fakultas Farmasi, Universitas Muhammadiyah Surakarta

Keywords:

Koenzim, Kofaktor, DOCK6, aldosereductase, Grid-Scoredan Amber-Score

Abstract

Kofaktor dan koenzim memiliki peran penting dalam mekanisme aksi obat di dalam tubuh. Molekul air telah terbukti memberikan pengaruh terhadap konformasi akhir ligan dalam uji insilico. Kajian ini ditujukan untuk memotret pengaruh koenzim dan kofaktor terhadap hasil dockingmolekular dengan studi kasus protein reduktase aldosa. Ketiga protein aldosereductase diunduh dari database bank protein (RCSB PDB). Kelompok senyawa uji dipilih dan diunduh dari databasePubChem berdasarkan informasi dari laman bindingdb.org. Software DOCK versi 6.9 digunakan untuk mendapatkan hasil interaksi ligan dan protein setelah dilakukan dockingmolekular yang dinyatakan dalam Grid-Score dan Amber-Score. Hanya terdapat satu senyawa native dengan konformasi ruang hasil docking mode rigid dan fleksibel menyerupai hasil pengukuran kristalografinya. Kedua protein target lainnya memiliki nilai Hungarianrootmeansquaredeviation (RMSDh) kurang dari 5 pada mode rigid saja. Hal yang sama juga didapati pada hasil rescoringnative dengan Amber-Score untuk mode fleksibel salah satu protein dan nilai RSD antar perlakuan diperoleh lebih dari 5%, sedangkan nilai Grid-Score ketiga native memperlihatkan hasil yang tidak berbeda antar perlakuan untuk kedua mode. Urutan tiga terbaik senyawa uji hasil docking memperlihatkan hasil yang berbeda termasuk nilai skoring ketiganya pada beda perlakuan kecuali nilai Grid-Score mode fleksibel.

References

Kirschning A. Coenzymes and their role in the evolution of Life. Angew. Chem. Int. Ed. 2020.DOI:10.1002/anie.201914786.

UniprotConsortium. Cofactor. 2020. [cited 2020 January 6]. Available from https://www.uniprot.org/help/cofactor.

Freeland-Graves J H, and Bavik C. Coenzymes in Caballero B,Trugo L. and Finglas P. M. Editors. The Encyclopedia of Food Sciences and Nutrition, Second Edition. Academic Press; 2003. 1475-81.

Morales-Luna L, González-Valdez A, Sixto-López Y, Correa-Basurto J, Hernández-Ochoa B, et al. Identification of the NADP+ Structural Binding Site and Coenzyme Effect on the Fused G6PD::6PGL Protein from Giardialamblia. Biomolecules. 2020, 10(1), 46; https://doi.org/10.3390/biom10010046.

Lemmon G and Meiler J. Towards Ligand Docking Including Explicit Interface Water Molecules. PLoS ONE. 2013, 8(6): e67536.

Kumar A and Zhang K Y J. Investigation on the Effect of Key Water Molecules on Docking Performance in CSARdock Exercise. J. Chem. Inf. Model. 2013, 53, 8, 1880-1892.

Munawar S, Vandenberg J I, and Jabeen I. Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe the Impact of Water Molecules on Conformational Changes of hERG Inhibitors in Drug Trapping Phenomenon. Int. J. Mol. Sci. 2019, 20, 3385; doi:10.3390/ijms20143385.

PDB ID: 1IEI. Kinoshita T, Miyake H, Fujii T, Takakura S, and Goto T.The Structure of Human Recombinant Aldose Reductase Complexed with the Potent Inhibitor Zenarestat.ActaCrystallogr.Sect.D,2002, 58: 622-626.

PDB ID: 3G5E. Van Zandt M C, Doan B, Sawicki D R, Sredy J, and PodjarnyA D.Discovery of [3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b] pyridin-1-yl] aceticAcids as Highly Potent and Selective Inhibitors of Aldose Reductase for Treatment of Chronic Diabetic Complications.Bioorg. Med. Chem. Lett. 2009, 19: 2006-2008.

PDB ID: 4JII. Zhang L, Zhang H, Zhao Y, Li Z, ChenS, et al.Inhibitor Selectivity between Aldo-Keto Reductase Superfamily Members AKR1B10 and AKR1B1: Role of Trp112 (Trp111).Febs Lett.2013, 587: 3681-3686.

Mylari B L, Larson E R, Beyer T A, Zembrowski W J, Charles E. Aldinger C E, et al. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl] methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem. 1991,34, 108-122.

Van Zandt M C, Jones M L, Gunn D E, Geraci L S, J. Howard Jones H J, et al. Discovery of 3-[(4,5,7-Trifluorobenzo-thiazol-2-yl) methyl] indole-N-acetic Acid (Lidorestat) and Congeners as Highly Potent and Selective Inhibitors of Aldose Reductase for Treatment of Chronic Diabetic Complications. J. Med. Chem. 2005, 48, 9, 3141-3152.

Deck L M, Vander Jagt D L, and Royer R E. Gossypol and Derivatives: a New Class of Aldose Reductase Inhibitors. J. Med. Chem. 1991,34, 3301-3305.

Volkamer A, Kuhn D, Grombacher T, Rippmann F, andRarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J. Chem. Inf. Model. 2012,52,360-372.

The PyMOL Molecular Graphics System, Version 2.3.2 Schrödinger, LLC.

Stierand K, Maaß P, Rarey M. Molecular Complexes at a Glance: Automated Generation of two-dimensional Complex Diagrams. Bioinformatics. 2006; 22:1710-1716.

National Center for Biotechnology Information. PubChem Database. Zenarestat, CID=5724, https://pubchem.ncbi.nlm.nih.gov/compound/Zenarestat (accessed on Jan. 6, 2020).

National Center for Biotechnology Information. PubChem Database. Zopolrestat, CID=1613, https://pubchem.ncbi.nlm.nih.gov/compound/Zopolrestat (accessed on Jan. 6, 2020).

Santoso B. Re-Scoring Skor Grid Hasil Docking MolekularLiganAslidari Protein Target T47D danWiDrdenganMetodeSkor GBSA-Hawkins-Zou dan Amber menggunakan Program DOCK6. In: Proceeding of the 10th University Research Colloquium 2019, Bidang MIPA danKesehatan. Gombong; 2019, p. 694-703.

Santoso B. Pengaruh Volume GridboxpadaDockingSenyawadalamStelechocarpusburaholterhadap Protein Homolog Antiinflamasi TRPV1. In: Proceeding of the 6th University Research Colloquium 2017, Bidang MIPA danKesehatan. Magelang; 2017, p. 321-328.

Downloads

Published

2020-05-12

How to Cite

Santoso, B. (2020). Pengaruh Koenzim dan Kofaktor Protein Target Reduktase Aldosa dalam Docking Molekular Menggunakan DOCK6. Prosiding University Research Colloquium, 284–290. Retrieved from https://repository.urecol.org/index.php/proceeding/article/view/929