Pertimbangan Lingkungan pada Pembangkit Listrik Tenaga OTEC (Ocean Thermal Energi Conversion)

Authors

  • Andi Hendrawan Akademi Maritim Nusantara

Keywords:

OTEC; environmental impact

Abstract

Indonesia, which has the largest population among ASEAN countries, so
it will become net oil imports at the beginning of the 21st century. The
Indonesian government has developed a long-term energy plan that aims
to diversify energy to reduce the country's dependence on oil. One
renewable energy source is utilizing differences in sea surface
temperature, solar energy that creates this gradient and specifically
Ocean Thermal Energy Conversion (OTEC) Ammonia is formed by a
catalytic combination of 3 moles of hydrogen with 1 mole of nitrogen at
high pressure and medium temperature with an iron oxide catalyst. the
environmental impact of a closed cycle OTEC can be understood. The
following have been identified as potentially significant: release of fluids
or biocides that work in the atmosphere, impacts on threatened or
endangered terrestrial or marine species, etc. Because of its irritation,
these pollutants can stimulate the inflammatory process in the upper
respiratory tract, which is the channel of exposure from the nose to the
throat

References

C. Seyfried, H. Palko, and L. Dubbs,
“Potential local environmental
impacts of salinity gradient energy :
A review,” Renew. Sustain. Energy
Rev., vol. 102, no. August 2018, pp.
111–120, 2019.
[8] A. R. Sinuhaji, “Potential Ocean
Thermal Energy Conversion (OTEC)
in Bali,” KnE Energy, vol. 1, no. 1, p.
5, 2015.
[9] O. Apunda and B. O. Nyangoye,
“ENVIRONMENTAL
CHALLENGES FOR OCEAN
ENERGY GENERATION,” Int. J.
Dev. Res., vol. 8, no. 7, pp. 21744–
21748, 2018.
[10] H. Kamogawa, “OTEC research in
Japan,” Energy, vol. 5, no. 6, pp.
481–492, 1980.
[11] M. H. Yang and R. H. Yeh,
“Analysis of optimization in an
OTEC plant using organic Rankine
cycle,” Renew. Energy, vol. 68, pp.
25–34, 2014.
[12] F. Sinama, M. Martins, A. Journoud,
O. Marc, and F. Lucas,
“Thermodynamic analysis and
optimization of a 10MW OTEC
Rankine cycle in Reunion Island with
the equivalent Gibbs system method
and generic optimization program
GenOpt,” Appl. Ocean Res., vol. 53,
pp. 54–66, 2015.
[13] A. Hendrawan, Lusiani, and
Arissasongko, “ANALISIS ZALIR
KERA PADA PEMBANGKIT
LISTRIK TENAGA OTEC (OCEAN
THERMAL ENERGI
CONVERSION),” J. Saintara Vol.,
vol. 2, no. 2, 2018.
[14] A. Hendrawan, A. Sasongko, and S.
Sukmono, “ANALISIS
THERMODINAMILA KETEL
PADA PEMBANGKIT LISTRIK
TENAGA OTEC (OCEAN

THERMAL ENERGI
CONVERSION),” J. Saintara, vol.
1, no. 2, 2017.
[15] A. Hendrawan, “ANALISIS
POTENSI PEMBANGKIT LISTRIK
TENAGA OTEC (OCEAN
THERMAL ENERGI
CONVERSION) WILAYAH
KALIANGET DONAN CILACAP,”
J. bahari Yogya, vol. 15, no. 24, pp.
66–79, 2017.
[16] M. . QUINBY-HUNT, D. SLOAN,
and P. WILDE, “POTENTIAL
ENVIRONMENTAL IMPACTS OF
CLOSED-CYCLE OCEAN
THERMAL ENERGY
CONVERSION,” Env. IMPACT
ASSESS REV, pp. 169–198, 1987.
[17] F. Chen, L. Liu, J. Peng, Y. Ge, H.
Wu, and W. Liu, “Theoretical and
Experimental Research on the
Thermal Performance of Ocean
Thermal Energy conversion System
Using the Rankine Cycle Mode
Fengyun,” Energy, 2019.
[18] A. Khosravi, S. Syri, M. E. H. Assad,
and M. Malekan, “Thermodynamic
and economic analysis of a hybrid
ocean thermal energy
conversion/photovoltaic system with
hydrogen-based energy storage
system,” Energy, 2019.

Downloads

Published

2019-10-21

How to Cite

Hendrawan, A. (2019). Pertimbangan Lingkungan pada Pembangkit Listrik Tenaga OTEC (Ocean Thermal Energi Conversion). Prosiding University Research Colloquium, 62–69. Retrieved from https://repository.urecol.org/index.php/proceeding/article/view/789