Classification of Avocado Ripeness Levels using Naïve Bayes Method
Keywords:
Classification, Fruit Ripeness, Naive BayesAbstract
During this time most people in determining the ripeness of avocados for personal consumption is not difficult because they can distinguish themselves but another case if used for production, which requires a lot of labor to group ripe and raw avocados. One of the innovations in information and communication technology in agriculture and plantations is the use of classification methods with naïve bayes algorithms. The formula of the problem in this study is how to do the classification on the ripeness of avocados and see the accuracy rate of the data. The purpose of this study is to classify avocado ripeness and to acquire intelligent systems, so that it becomes the first step towards the implementation stage. Based on the results and analysis that has been done, it can be concluded that the Naive Bayes method is considered capable in classifying avocado ripeness by using RGB color features. The accuracy in testing using Naïve Bayes method reached 83.34%. The performance obtained from this intelligent system is also effective and efficient so that the classification of avocado ripeness can be implemented.
References
[2] M. H. Hanafi, N. Fadillah, and A. Insan, “Optimasi Algoritma K-Nearest Neighbor
untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna,” It J.
Res. Dev., vol. 4, no. 1, pp. 10–18, 2019, doi: 10.25299/itjrd.2019.vol4(1).2477.
[3] R. H. Ellif, Sampe Hotlan Sitorus, “Klasifikasi Kematangan Pepaya Menggunakan
Ruang Warna HSV dan Metode Naive Bayes Classifier,” J. Komput. dan Apl. , vol.
09, no. 01, pp. 66–75, 2021.
[4] A. Rahmat, K. Haba, and K. C. Pelangi, “Ruk Berdasarkan Fitur Ekstraksiglcm
Dengan Metode,” J. Teknol. Dan Manaj. Inform. , vol. 6, no. 1, 2020.
[5] A. Ciputra, D. R. I. M. Setiadi, E. H. Rachmawanto, and A. Susanto, “Klasifikasi
Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan
Ekstraksi Fitur Citra Digital,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput. ,
vol. 9, no. 1, pp. 465–472, 2018, doi: 10.24176/simet.v9i1.2000.
[6] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class
imbalance in classification performance metrics based on the binary confusion
matrix,” Pattern Recognit. , vol. 91, pp. 216–231, 2019, doi:
10.1016/j.patcog.2019.02.023.
[7] A. P. Taftazani Ghazi Pratama , Achmad Ridwan, “Penerapan Algoritma C4.5 untuk
Klasifikasi Kanker Serviks Tingkat Awal,” vol. 1, no. 1, pp. 1–6, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ira Nuryani, Aldi Muhammad Nur Fadli, Nadila Dwi Saputri, Alfira Nisa Fadhilah, Muhammad Resa Arif Yudianto, M Maimunah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.