Classification of Tangerines on Fruit Ripening Levels Using K-Nearest Neighbor Algorithm
Keywords:
Classification, KNN, TangerinesAbstract
This journal reviews the classification of the maturity level of tangerines based on HSV using the K-Nearest Neighbor (KNN) method. This study aims to make it easier for the public to distinguish ripe and unripe when choosing citrus fruits and also to avoid fruit shops selling unripe oranges so as not to harm sellers or buyers. We take the data sources used in this study ourselves. In this study, we use the K-Nearest Neighbors (KNN) method. This method is used in the image classification process by relying on the results of feature extraction that have previously been trained. This method selects the nearest neighbor from the training dataset, then determines the closest distance value or the smallest distance value that will produce the classification output. The results of the accuracy in using this method have reached 93% with a value of k=7.
References
M 1 V 2 Hasil Induksi Mutasi Sinar Gamma ( Fruit Diversity of SoE Mandarin
Mutant at M 1 V 2 Generation Resulted from Gamma Irradiation ),” Bul. Plasma
Nutfah, vol. 23, no. 2, pp. 69–80, 2017.
[2] H. Prabowo, “Deteksi Kondisi Kematangan Buah Jeruk Berdasarkan Kemiripan
Warna Pada Ruang Warna RGB Berbasis Android,” J. Elektron. Sist. Inf. dan
Komput., vol. 3, no. 2, pp. 9–19, 2017.
[3] J. Coding and S. K. Untan, “Kata Kunci: Kebakaran Hutan, Data Mining, KNearest
Neighbor (KNN), Fire Weather Index(FWI). 1.,” vol. 06, no. 2, 2018.
[4] B. L. Muhammad, “Modified Nearest Neighbor Untuk Prediksi Curah Hujan,”
Konf. Nas. Sist. dan Inform. 2015, no. 1, pp. 272–277, 2015.
[5] N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan,” Sisfokom, vol.
08, no. 1, pp. 74–78, 2019.
[6] N. Nafiah, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV
dengan KNN,” J. Elektron. List. dan Teknol. Inf. Terap., vol. 1, no. 2, pp. 1–4,
2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti.
[7] C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses
Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah
Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” J. Inform. J.
Pengemb. IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.
[8] F. Aditiya and R. A. Sandra, “Perbaikan Citra Hasil Kamera Handphone Dengan
Metode Median Filter,” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp.
401–404, 2020.
[9] A. Wedianto, H. L. Sari, and Y. S. H, “269-Article Text-766-1-10-20160609,” J.
Media Infotama, vol. 12, no. 1, pp. 21–30, 2016.
[10] Z. Abidin, K. Joni, and A. F. Ibadillah, “Rancang Bangun Robot Penghindar
Halangan Berbasis Kamera Menggunakan Deteksi Kontur,” J. Infotel, vol. 9, no.
3, pp. 248–256, 2017, doi: 10.20895/infotel.v9i3.279.
[11] M. D. Nurmalasari, K. Kusrini, and S. Sudarmawan, “Komparasi Algoritma
Naive Bayes dan K-Nearest Neighbor untuk Membangun Pengetahuan Diagnosa
Penyakit Diabetes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 52–59,
2021, doi: 10.31603/komtika.v5i1.5140.
[12] A. Pratama, Ghazi, Taftazani ; Ridwan, Achmad; Prihandono, “Penerapan
Algoritma C4.5 untuk Klasifikasi Kanker Serviks Tingkat Awal,” vol. 1, no. 1,
pp. 1–6, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Irfan Rasyid, Imam Saputra, Raden Kartika Satya Suryanegara, Muhammad Resa Arif Yudianto, M Maimunah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.