SIMULASI NUMERIK KINERJA SISTEM PENDINGINAN TRAILING-EDGE PADA SUDU TURBIN GAS

Authors

  • Agus Jamaldi
  • Marwan Effendy
  • Muhammad Rahmadi

Keywords:

DES, film cooling effectiveness, discharge coefficient

Abstract

Penelitian ini bertujuan untuk mengevaluasi kecocokan beberapa model turbulensi yang telah ditemukan para ilmuwan terdahulu seperti DES Spallart-Almaras (SA), DES realizable k-?, dan scale adaptive simulation (SAS). Ketiga model turbulensi tersebut diujicobakan untuk mensimulasikan sistem pendinginan trailing edge pada sudu turbin. Riset simulasi dilakukan dengan memanfaatkan desain peneliti terdahulu, yaitu sistem pendingin “trailing cutback” yang memiliki integrasi dengan “pin-fin cooling”. Geometri spesimen uji, keadaan awal aliran fluida dan kondisi batasnya mengacu pada paper penelitian yang dipublikasikan Effendy dkk (2016). Investigasi berfokus pada dua parameter penting, yaitu adiabatic film cooling effectiveness (?aw) dan discharge coefficient (CD). Hasil simulasi menunjukkan bahwa model turbulensi DES-SA mampu memberikan hasil prediksi parameter ?aw yang konsisten terhadap data penelitian terdahulu dengan perbedaan hingga 4,25%. Sementara, nilai CD tidak ada perbedaan yang bermakna dibanding data eksperimen maupun simulasi.

References

Brundage, A. L., & Plesniak, M. W. (2007). Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses, 31, 249–260. https://doi.org/10.1016/j.expthermflusci.2006.04.004
Effendy, M., Yao, Y., & Marchant, D. R. (2017). Detached-Eddy Simulation of Trailing-Edge ( TE ) Cutback Turbine Blade Cooling, 8, 1–13. https://doi.org/10.1051/matecconf/201713500008
Facchini, B., Innocenti, L., Tarchi, L., & Sergio, E. (2017). Pedestal And Endwall Contribution In Heat Transfer In Thin Wedge.
Gritsch, M., & Schnieder, M. (2009). Design Considerations And Validation OF TRAILING EDGE PRESSURE Pressure side t d, 1–8.
Han, J. (2004). Recent Studies in Turbine Blade Cooling ?, 10(6), 443–457. https://doi.org/10.1080/10236210490503978
Horbach, T., Schulz, A., & Bauer, H. (2016). Trailing Edge Film Cooling of Gas Turbine Airfoils — External Cooling Performance of Various Internal Pin Fin Configurations, 133(October 2011), 1–9. https://doi.org/10.1115/1.4002964
Martini, P., Schulz, A., Whitney, C. F., & Lutum, E. (2003). Experimental and numerical investigation of trailing edge lm cooling downstream of a slot with internal rib arrays, 217, 393–401.
Martini, P., Schulz, A., & Wittig, S. (2016). Experimental And Numerical Investigation Of Trailing Edge Film Cooling By Circular Coolant Wall Jets Ejected From A Slot With Internal Rib Arrays, 1–9.
Tarchi, L., Facchini, B., Tarchi, L., Facchini, B., & Zecchi, S. (2008). Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement .... Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement and Elliptic Pin Fin, (May 2014). https://doi.org/10.1155/2008/109120
Tarchi, L., Facchini, B., Zecchi, S., & Stecco, S. (2008). Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement and Elliptic Pin Fin, 2008. https://doi.org/10.1155/2008/109120
Yang, Z., & Hu, H. (2012). An experimental investigation on the trailing edge cooling of turbine blades. Propulsion and Power Research, 1(1), 36–47. https://doi.org/10.1016/j.jppr.2012.10.007
?

Downloads

Published

2019-01-21

How to Cite

Jamaldi, A., Effendy, M., & Rahmadi, M. (2019). SIMULASI NUMERIK KINERJA SISTEM PENDINGINAN TRAILING-EDGE PADA SUDU TURBIN GAS. Prosiding University Research Colloquium, 153–160. Retrieved from https://repository.urecol.org/index.php/proceeding/article/view/496