STIMULASI KEJUT PANAS DALAM PENYELESAIAN BERBAGAI PERMASALAHAN DALAM PENYEMBUHAN LUKA DIABETES MELITUS

  • Sodiq Kamal
Keywords: Heat shock stimulations, hipergranulasi, Hiperkeratosis

Abstract

Latar belakang : Luka  pada penderita diabetes melitus (DM) yang sulit sembuh disebabkan oleh gangguan pada makrofag. Gangguan ini menyebabkan berbagai bentuk gangguan selama tahap proliferasi. Beberapa kemungkinan gangguan tersebut adalah hipergranulasi dan munculnya hiperkeratosis pada luka yang menjadi penyulit penyembuhan luka. Heat Shock Protein (HSP) merupakan citokin yang dihasilkan pada saat sel mengalami trauma. HSP mampu mengaktivasi makrofag. pengalaman klinis menunjukkan perbaikan proses penyembuhan luka dengan hipergranulasi dan hyperkeratosis. Bagaimana kemungkinan mekanisme terapi Heat shock stimulation pada luka dalam menyelesaikan masalah hipergranulasi dan hiperkeratosis.

Tujuan : Penelitian ini akan mengkaji tentang berbagai kemungkinan mekanisme terapi dari heat shock stimulations (HSS) dalam mengatasi permasalahan hipergranulasi dan kalus pada luka DM.

Metode : Penelitian ini merupakan penelitian studi kasus. dokumen status pasien hiperganulasi 1 dokumen dan kalus 2 dokumen. Fokus analisis dilakukan khususnya untuk dokumen berupa foto perkembangan luka sebelum dan sesudah dilakukan heat shock stimulations.

Hasil : pada kasus hipergranulasi HSS mampu menjadi pemicu keberlanjutan tahap penyembuhan luka. Pada kasus hiperkeratosis HSS mampu mencegah munculnya kembali hiperkeratosis.

Kesimpulan : Heat shock stimulation mampu mengatasi permasalahan penyembuhan luka DM melalui aktivasi makrofag sebagai kemungkinan mekanisme terapi.

References

Albright, J. M., Dunn, R. C., Shults, J. A., Boe, D. M., Afshar, M., & Kovacs, E. J. (2016). Advanced Age Alters Monocyte and Macrophage Responses. Antioxidants & Redox Signaling, 25(15), 805–815. https://doi.org/10.1089/ars.2016.6691
Binder, R. J., Anderson, K. M., Basu, S., & Srivastava, P. K. (2000). Cutting Edge: Heat Shock Protein gp96 Induces Maturation and Migration of CD11c+ Cells In Vivo. The Journal of Immunology, 165(11), 6029–6035. https://doi.org/10.4049/jimmunol.165.11.6029
Binder, R. J., Zhou, Y. J., Messmer, M. N., & Pawaria, S. (2012). CD91-Dependent Modulation of Immune Responses by Heat Shock Proteins : A Role in Autoimmunity, 2012. https://doi.org/10.1155/2012/863041
Chen, W., Syldath, U., Bellmann, K., Burkart, V., & Kolb, H. (1999). Human 60-kDa heat-shock protein: a danger signal to the innate immune system. Journal of Immunology (Baltimore, Md. : 1950), 162(6), 3212–3219. https://doi.org/10.4049/jimmunol.170.5.2340
Edmonds, M. E., & Foster, a V. M. (2006). Diabetic foot ulcers. Bmj, 332(February), 407–410. https://doi.org/10.1136/bmj.332.7538.407
Engelen, M., Besche, B., Lefay, M. P., Hare, J., & Vlaminck, K. (2004). Effects of ketanserin on hypergranulation tissue formation, infection, and healing of equine lower limb wounds. Canadian Veterinary Journal, 45(2), 144–149.
Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. Lancet, 366(9498), 1736–1743. https://doi.org/10.1016/S0140-6736(05)67700-8
Hampton, S. (2007). Understanding overgranulation in tissue viability practice. British Journal of Community Nursing, 12(9), S24-30. https://doi.org/10.12968/bjcn.2007.12.Sup4.43000
Kamal, S., Margono, & Hidayah, N. (2017). A New Potential Function Of Electrocautery Units In Improving The Inflammatory Response In Diabetic Wounds. magelang.
Khanna, S., Biswas, S., Shang, Y., Collard, E., Azad, A., Kauh, C., … Roy, S. (2010a). Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice, 5(3). https://doi.org/10.1371/journal.pone.0009539
Khanna, S., Biswas, S., Shang, Y., Collard, E., Azad, A., Kauh, C., … Roy, S. (2010b). Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PloS One, 5(3), e9539. https://doi.org/10.1371/journal.pone.0009539
Kirwan, H., & Pignataro, R. (2016). The Skin and Wound Healing. Pathology and Intervention in Musculoskeletal Rehabilitation (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-323-31072-7.00002-6
Koh, T. J., & Dipietro, L. A. (2011). Inflammation and wound healing : the role of the macrophage. Expert Review in Molecular Medicine, 13(July), 1–12. https://doi.org/10.1017/S1462399411001943
Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P., & Kurt-Jones, E. A. (2000). Cutting Edge: Heat Shock Protein (HSP) 60 Activates the Innate Immune Response: CD14 Is an Essential Receptor for HSP60 Activation of Mononuclear Cells. The Journal of Immunology, 164(1), 13–17. https://doi.org/10.4049/jimmunol.164.1.13
Laplante, A. F., Moulin, V., Auger, F. A., Landry, J., Li, H., Morrow, G., … Germain, L. (1998). Expression of Heat Shock Proteins in Mouse Skin During Wound Healing, 46(11), 1291–1301.
Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. American Journal of Pathology, 170(4), 1178–1191. https://doi.org/10.2353/ajpath.2007.060018
McGrath, A. (2011). Overcoming the challenge of overgranulation. Wounds UK.
Moseley, P. (2000). Stress proteins and the immune response. Immunopharmacology, 48(3), 299–302. https://doi.org/10.1016/S0162-3109(00)00227-7
Murrell, G. A. C., Bromley, M. J. 0., & Francis, L. (1990). Modulation of fibroblast proliferation by oxygen free radicals. Biochemistry, 265, 659–665. https://doi.org/10.1007/978-3-8349-8375-6
Nishikawa, M., Takemoto, S., & Takakura, Y. (2008). Heat shock protein derivatives for delivery of antigens to antigen presenting cells. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2007.09.030
Rey, J. F., Beilenhoff, U., Neumann, C. S., Dumonceau, J. M., Nurses, E., Nurses, E., … Dumonceau, J. M. (2010). European Society of Gastrointestinal Endoscopy ( ESGE ) guideline : the use of electrosurgical units. Endoscopy, 42, 764–771. https://doi.org/http://dx.doi.org/ 10.1055/s-0030-1255594
Schif-zuck, S., Gross, N., Simaan, A., Ran, R., Serhan, C., & Ariel, A. (2011). Satiated-efferocytosis generates pro-resolving CD11blow macrophages: modulation by resolvins and glucocorticoids Sagie. Eur J Immunol, 41(2), 366–379. https://doi.org/10.1002/eji.201040801.Satiated-efferocytosis
Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., … Longaker, M. T. (2010). Health and the Economy, 17(6), 763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x.Human
Tsourdi, E., Barthel, A., Rietzsch, H., Reichel, A., & Bornstein, S. R. (2013). Current Aspects in the Pathophysiology and Treatment of Chronic Wounds in Diabetes Mellitus, 2013.
Vuolo, J. (2016). Hypergranulation: exploring possible management options. British Journal of Nursing (Mark Allen Publishing), 19(6), S4, S6-8. https://doi.org/10.12968/bjon.2010.19.Sup2.47244
Wynn, T. A., & Vannella, K. M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44(3), 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
Published
2019-01-21