LATIHAN FISIK DAN PEMBATASAN KALORI MERUBAH TIPE SERAT OTOT RANGKA

  • Adnan Faris Naufal
  • Renny Hidayati Zein
Keywords: PGC-1, pembatasan kalori, latihan fisik, ELISA, Biologi Molekuler

Abstract

Pendahuluan : Kami menguji pengaruh dari pemberian latihan fisik dan pembatasan kalori dalam peningkatan protein PGC-1α pada otot rangka mencit jantan. Latihan fisik yang diberikan menggunakan runingweal yang dibuat khusus untuk mencit. Pemberian pembatasan kalori diberikan dengan cara mengurangi sebanyak 30% dari jumlah makanan yang biasa dimakan mencit setiap harinya.

Tujuan : Tujuan dari penelitian ini adalah untuk mengukur kadar protein PGC-1α pada otot rangka mencit yang diberikan latihan fisik dan pembatasan kalori.

Metode : 28 mencit jantan berusia 6 minggu dibagi menjadi 4 kelompok yang terdiri dari kelompok kontrol, Latihan Fisik (LF), Pembatasan Kalori (PK) dan Latihan Fisik + Pebatasan Kalori (LF+PK). Penelitian dilakukan selama 8 minggu dan analisa protein PGC-1α menggunakan teknik laboratorium ELISA. Analisa data menggunakan SPSS versi 21.0.

Hasil : Setelah 8 minggu mencit diberikan latihan fisik dan pembatasan kalori, hasilnya menunjukan terdapat perbedaan pengaruh yang signifikan pada rerata kadar  PGC-1α disetiap kelompok (p> 0,05) dengan mengguankaan uji Anova.

Kesimpulan :  Terdapat perbedaan peningkatan konsentrasi protein PGC 1  α pada otot rangka mencit jantan yang diberikan latihan fisik dan pembatasan kalori.

References

Akimoto, T., Li, P. & Zhen, Y. (2008). “Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging”. Am J Physiol Cell Physiol. 295 (1): 288-292.
Cui, M., Yu, H., Wang, J., Gao, J. & Li, J. (2013). “Chronic Caloric Restriction and Exercise Improve Metabolic Conditions of Dietary-Induced Obese Mice in Autophagy Correlated Manner without Involving AMPK”. Journal of Diabetes Research. 2013: 1-8.
Correia, S.C., Santos, R.X., Perry, G., Zhu, X., Moreira, P.I. & Smith, M.A. 2010. “Mitochondria: the missing link between preconditioning and neuroprotection”. J Alzheimers Dis. 20(2): 75-85.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. http://doi.org/10.1093/nar/gkh340
Guyton, A.C. & Hall, J.E. 2011. Buku Ajar Fisiologi Kedokteran. Jakarta: EGC Medical Publisher.
Halliwell, B. & Whiteman, M. (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol, 142: 231-55.
Ruderman, N.B., Xu, X.J., Nelson, L., Cacicedo, J.M., Saha, A.K., Fan, L., Ido, Y. (2010). “AMPK and SIRT1: a long-standing partnership?”. American Journal of Physiology - Endocrinology and Metabolism. 298 (40): 751-760.
Irawan, M.A. 2007. Metabolisme Energi Tubuh & Olahraga. Jakarta: Sports Sciene Brief.
Kisner, C dan Colby L. A. 2007. Therapeutic Exercise: Foundations and techniques. 5th Ed. Philadelphia: F. A. Davis Company. PP: 2
Liang, H., Ward, W.F. (2006). “PGC-1alpha: a key regulator of energy metabolism”. Adv Physiol Educ. 30(4):145-51.
Michan, S. (2014). “Calorie restriction and NAD+/sirtuin counteract the hallmarks of aging”. Front Biosci (Landmark Ed). 19, 1300–1319.
Oropeza, D., Jouvet, N., Bouyakdan, K., Perron, G., Ringuette, L.J., Philipson, L.H., Kiss, R.S., Poitout, V., Alquier, T.& Estall, J.L. (2015). “PGC-1 coactivators in β-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids”. Mol Metab. 14;4(11):811-22.
Patel, H., Alkhawam, H., Madanieh, R., Shah, N., Kosmas, C. E., & Vittorio, T. J. (2017). Aerobic vs anaerobic exercise training effects on the cardiovascular. World Journal of Cardiology, 9(2), 134–138. http://doi.org/10.4330/wjc.v9.i2.134
Poljšak, B. & Milisav, I. (2012). Clinical implications of cellular stress responses. Bosn J Basic Med Sci. 12(2):122-6.
Ranhotra, H. S. (2010). Long-term caloric restriction up-regulates PPAR gamma co-activator 1 alpha (PGC-1alpha) expression in mice. Indian J Biochem Biophys. 47(5):272-7.
Rodríguez-Bies, E., Calvo, S.S.C., Fontán-Lozano, A., Amaro, J.P., Berral de la Rosa,F,J., Carrión,A,M., Navas,P., López-Lluch, G. (2010) “Muscle Physiology Changes Induced by Every Other Day Feeding and Endurance Exercise in Mice: Effects on Physical Performance”. Plos One. 5(11): 1-12.
Someya, S., Kujoth, G.C., Kim, M.J., Hacker, T.A., Vermulst, M., Weindruch, R.& Prolla, T.A.. (2017) “Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice”. Journal pone. 12(2): e0171159.
Summermatter, S., Santos, G., Pérez-Schindler, J., & Handschin, C. (2013). Skeletal Muscle Pgc-1α Controls Whole-Body Lactate Homeostasis Through Estrogen-Related Receptor Α-Dependent Activation Of Ldh B And Repression Of Ldh A. Proc Natl Acad Sci U S A. 110 (21): 8738-8743.
Talbot, J., & Maves, L. (2016). Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdisciplinary Reviews. Developmental Biology, 5(4), 518–534. http://doi.org/10.1002/wdev.230
Villena, J.A. (2015). “New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond”. The FEBS Journal. 282(4):647–672.
Published
2019-01-21