Serapan Karbon Ekosistem Pada Wilayah Perkotaan Surakarta, Jawa Tengah, Indonesia

Authors

  • Munawar Cholil Universitas Muhammadiyah Surakarta
  • D Danardono Universitas Muhammadiyah Surakarta
  • M. Iqbal Taufiqurrahman Sunariya Universitas Muhammadiyah Surakarta
  • Vidya Nahdiyatul Fikriyah Universitas Muhammadiyah Surakarta
  • Muhammad Abdul Latief Universitas Muhammadiyah Surakarta
  • Kartika Cindi Wulandari Universitas Muhammadiyah Surakarta

Keywords:

Karbon, Net Primary Productivity, Perkotaan, Surakarta

Abstract

Nilai serapan karbon ekosistem di kawasan perkotaan jarang diteliti karena kurangnya vegetasi sebagai media penjerap karbon. Padahal kawasan perkotaan memiliki tingkat emisi karbon tinggi yang harus diminimalkan jumlahnya. Di sisi lain, nilai serapan karbon di kawasan perkotaan sangatlah dinamis akibat adanya faktor alami dari lingkungan dan faktor non-alami akibat aktivitas antropogenik. Tujuan dari penelitian ini yaitu untuk mengidentifikasi nilai serapan karbondioksida di kawasan perkotaan dan untuk mengetahui variasi spasial nilai serapan karbon di kawasan perkotaan selama setahun. Hasil menunjukkan bahwa nilai serapan karbon di kawasan perkotaan tropis memiliki nilai yang cukup besar dibandingkan kawasan perkotaan di iklim sedang. Hal ini terjadi karena masih adanya ruang terbuka hijau berupa kebun di lahan pekarangan dan lahan pertanian.

References

1. Guitart AB, Rodriguez LCE. Private valuation of carbon sequestration in forest plantations Private valuation of carbon sequestration in forest plantations. Ecol Econ [Internet]. 2010;69(3):451–8. Available from: http://dx.doi.org/10.1016/j.ecolecon.2009.10.005
2. Torres AB, MacMillan T, Skutsch M, Lovett JC. The valuation of forest carbon services by Mexican citizens : The case of Guadalajara city and La Primavera biosphere reserve The valuation of forest carbon services by Mexican citizens : the case of Guadalajara city and La Primavera biosphere reserve. Reg Environ Chang. 2013;13:661–80.
3. Mukhortova L, Schepaschenko D, Shvidenko A. Soil contribution to carbon budget of Russian forests. Agric For Meteorol. 2015;200:97–108.
4. Schuur EAG, Chadwick OA, Matson PA. Carbon Cycling And Soil Carbon Storage In Mesic To Wet Hawaiian Montane Forests. Ecology. 2001;82(11):3182–96.
5. Bian J, Li A, Deng W. Estimation and analysis of net primary Productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing International Society for Environmental Information Sciences 2010 Annual Conference ( ISEIS ) Estimation and analysis of net p. Procedia Environ Sci. 2015;2(2010):288–301.
6. Gong W, Wang L, Lin A, Zhang M. Evaluating the monthly and interannual variation of net primary production in response to climate in Wuhan during 2001 to 2010. Geosci J [Internet]. 2012;16(3):347–55. Available from: https://doi.org/10.1007/s12303-012-0025-4
7. Wang B, Yang S, Lu C, Zhang J, Wang Y. Comparison of net primary productivity in karst and non-karst areas : a case study in Guizhou Province , China. Environ Earth Sci. 2010;59:1337–47.
8. Lovett GM, Cole JJ, Pace ML. Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation ? Ecosystem. 2006;9:152–5.
9. Odum EP. The Strategy of Ecosystem Development. Science (80- ) [Internet]. 1969 Apr 18;164(3877):262 LP – 270. Available from: http://science.sciencemag.org/content/164/3877/262.abstract
10. Prentice IC, Heimann M, Sitch S. The Carbon Balance of The Terrestrial Biosphere: Ecosystem Models and Atmospheric Observations. Ecol Appl. 2000;10:1553–73.
11. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, et al. Terrestrial Ecosystem Production : A Process Model Based on Global Satellite and Surface Data. Global Biogeochem Cycles. 1993;7(4):811–41.
12. Prince SD, Goward SN. Global Primary Production : A Remote Sensing Approach. J Biogeogr. 1995;22:815–35.
13. Goetz SJ, Prince SD, Small J, Gleason ACR. Interannual variability of global terrestrial primary production : observations that differed regionally over the 8-year integrated global slight trend toward increased values through with boreal regions increasing regions for each IøC rise in air tempera. J Geophys Res. 2000;105:20077–91.
14. Xiao X, Zhang Q, Saleska S, Hutyra L, Camargo P, Wofsy SC, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ. 2005;94:105–22.
15. Chen J, Brosofske KD, Noormets A, Crow TR, Bresee MK, Le Moine JM, et al. A Working Framework for Quantifying Carbon Sequestration in Disturbed Land Mosaics. Environ Manage [Internet]. 2004;33(1):S210–21. Available from: https://doi.org/10.1007/s00267-003-9131-4
16. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Biosciences. 2004;54(6):547–60.
17. Chen T, Huang Q, Liu M, Li M, Qu L, Deng S, et al. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province , China. Sustainability. 2017;9(162):1–17.
18. Wu Y, Wu Z, Liu X. Dynamic Changes of Net Primary Productivity and Associated Urban Growth Driving Forces in Guangzhou City , China. Environ Manage [Internet]. 2020;65:758–73. Available from: http://dx.doi.org/10.1007/s00267-020-01276-7
19. Basuki I, Kauffman JB, Peterson J, Anshari G, Murdiyarso D. Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan , Indonesia. Mitig Adapt Strateg Glob Chang. 2019;24:557–73.
20. Potter C, Klooster S, Genovese V, Hiatt C. Forest production predicted from satellite image analysis for the Southeast Asia region. Carbon Balance Manag [Internet]. 2013;8(9):1–6. Available from: Carbon Balance and Management
21. Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, et al. Forest Ecology and Management Below- and above-ground biomass and net primary production in a paleotropical natural forest ( Sulawesi , Indonesia ) as compared to neotropical forests. For Ecol Manage. 2009;258(9):1904–12.
22. Ji Y, Zhou G, Luo T, Dan Y, Zhou L, Lv X. Variation of net primary productivity and its drivers in China ’ s forests during 2000 – 2018. For Ecosyst. 2020;7:1–11.
23. Malhi Y, Doughty C, Galbraith D. The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc. 2011;366:3225–45.
24. Yang H, Hu D, Xu H, Zhong X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province , China. Environ Sci Pollut Res. 2020;27:14915–32.
25. Zhou Y, Xing B, Ju W. Assessing the Impact of Urban Sprawl on Net Primary Productivity of Terrestrial Ecosystems Using a Process-Based Model — A Case Study. IEEE J Sel Top Appl Earth Obs Remote Sens. 2015;8:2318–31.
26. Milesi C, Elvidge CD, Nemani RR, Running SW. Assessing the impact of urban land development on net primary productivity in the southeastern United States Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ. 2003;86(2003):401–10.
27. Jiang Y. The contribution of human activities to dissolved inorganic carbon fl uxes in a karst underground river system : Evidence from major elements and ? 13 C DIC in Nandong , Southwest China. J Contam Hydrol [Internet]. 2013;152:1–11. Available from: http://dx.doi.org/10.1016/j.jconhyd.2013.05.010

Downloads

Published

2021-05-27

How to Cite

Cholil, M., Danardono, D., Sunariya, M. I. T., Fikriyah, V. N., Latief, M. A., & Wulandari, K. C. (2021). Serapan Karbon Ekosistem Pada Wilayah Perkotaan Surakarta, Jawa Tengah, Indonesia. Prosiding University Research Colloquium, 357–364. Retrieved from https://repository.urecol.org/index.php/proceeding/article/view/1420